Protein secretion and outer membrane assembly in Alphaproteobacteria
نویسندگان
چکیده
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.
منابع مشابه
Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts
In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems-Gram-negative bacteria, mitochondria and chloroplasts-research on bacter...
متن کاملSnapshots of usher-mediated protein secretion and ordered pilus assembly.
Type 1 pilus biogenesis was used as a paradigm to investigate ordered macromolecular assembly at the outer cell membrane. The ability of Gram-negative bacteria to secrete proteins across their outer membrane and to assemble adhesive macromolecular structures on their surface is a defining event in pathogenesis. We elucidated genetic, biochemical, and biophysical requirements for assembly of fun...
متن کاملAssembly of the Type Two Secretion System in Aeromonas hydrophila Involves Direct Interaction between the Periplasmic Domains of the Assembly Factor ExeB and the Secretin ExeD
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex i...
متن کاملCsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation.
Curli are extracellular amyloid fibres produced by Escherichia coli that are critical for biofilm formation and adhesion to biotic and abiotic surfaces. CsgA and CsgB are the major and minor curli subunits, respectively, while CsgE, CsgF and CsgG direct the extracellular localization and assembly of curli subunits into fibres. The secretion and stability of CsgA and CsgB are dependent on the ou...
متن کاملIn Silico Studies of Outer Membrane of Neisseria Meningitidis PorA: Its Expression and Immunogenic Properties
Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fems Microbiology Reviews
دوره 32 شماره
صفحات -
تاریخ انتشار 2008